Training-Based Spectral Reconstruction from a Single RGB Image
نویسندگان
چکیده
This paper focuses on a training-based method to reconstruct a scene’s spectral reflectance from a single RGB image captured by a camera with known spectral response. In particular, we explore a new strategy to use training images to model the mapping between cameraspecific RGB values and scene reflectance spectra. Our method is based on a radial basis function network that leverages RGB white-balancing to normalize the scene illumination to recover the scene reflectance. We show that our method provides the best result against three state-of-art methods, especially when the tested illumination is not included in the training stage. In addition, we also show an effective approach to recover the spectral illumination from the reconstructed spectral reflectance and RGB image. As a part of this work, we present a newly captured, publicly available, data set of hyperspectral images that are useful for addressing problems pertaining to spectral imaging, analysis and processing.
منابع مشابه
3D Reconstruction of Simple Objects from A Single View Silhouette Image
While recent deep neural networks have achieved promising results for 3D reconstruction from a single-view image, these rely on the availability of RGB textures in images and extra information as supervision. In this work, we propose novel stacked hierarchical networks and an end to end training strategy to tackle a more challenging task for the first time, 3D reconstruction from a single-view ...
متن کاملDetecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform
Buried channels are one of the stratigraphic hydrocarbon traps. They are often filled with a variety of porous and permeable sediments so they are important in the exploration of oil and gas reservoirs. In reflection seismic data, high-frequency components are sensitive to the channel thickness, whereas, low-frequency components are sensitive to the channel infill materials. Therefore, decompos...
متن کاملPlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image
This paper proposes a deep neural network (DNN) for piece-wise planar depthmap reconstruction from a single RGB image. While DNNs have brought remarkable progress to single-image depth prediction, piece-wise planar depthmap reconstruction requires a structured geometry representation, and has been a difficult task to master even for DNNs. The proposed end-to-end DNN learns to directly infer a s...
متن کاملAn Effective Image Demosaicking Algorithm with Correlations among RGB Channels
In this paper, an effective image demosaicking algorithm, which is based on the correlation among the three primary colors, is proposed for mosaic image with Bayer color filter array (CFA). To reduce the distortion and improve the reconstruction quality, the proposed interpolation method makes full use of the brightness information and the edge information. We design several filters with size o...
متن کاملFast Capture of Spectral Image Series
In recent years there has been an increasing interest in multispectral imaging hardware. Among many other applications is the color-correct reproduction of materials. In this paper, we aim at circumventing the limitations of most devices, namely extensive acquisition times for acceptable signal-to-noise-ratios. For this purpose we propose a novel approach to spectral imaging that combines high-...
متن کامل